# Exam. Code : 103201 <br> Subject Code : 1026 

B.A./B.Sc. Semester-I<br>MATHEMATICS<br>Paper-I (Algebra)

Time Allowed- 3 Hours]
[Maximum Marks-50
Note :-Attempt five questions, selecting at least two from each section. All questions carry equal marks.

## SECTION-A

1. (a) Find the rank of the matrix :

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
-2 & -4 & 4 & -7 \\
1 & 2 & 1 & 2
\end{array}\right]
$$

(b) If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1\end{array}\right]$. Find non-singular matrices
$P$ and $Q$ such that PAQ is in the normal form and hence determine the rank of $A$.
2. (a) If $\mathrm{A}, \mathrm{B}$ are two n -rowed square matrices, then show that :

$$
\rho(A)+\rho(B)-n \leq \rho(A B) \leq \min [\rho(A), \rho(B)]
$$

(b) Determine whether the following matrices have same column space or not :

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 4 & 3 \\
1 & 1 & 9
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -3 & -4 \\
7 & 12 & 15
\end{array}\right]
$$

3. (a) Investigate for what values of $a, b$ the following equations :

$$
x-2 y+3 z=1, x+y-z=4,2 x-2 y+a z=b
$$ have :

(i) no solution .
(ii) unique solution
(iii) an infinite number of solutions.
(b) Prove that if the eigen values of A are $\lambda_{1}, \lambda_{2}, \ldots \ldots . \lambda_{\mathrm{n}}$ then the eigen values of $A^{2}$ are $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots . . . \lambda_{n}^{2}$.
4. (a) Find the characteristic roots and the associated characteristic vectors for the matrix :

$$
\left[\begin{array}{ccc}
-3 & -9 & -12 \\
1 & 3 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Verify Cayley-Hamilton theorem for the matrix A, where :

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]
$$

5. (a) Find the characteristic and minimal equation of the

$$
\text { matrix } A=\left[\begin{array}{rcc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

(b) Write the quadratic form of the symmetric matrix :

$$
\left[\begin{array}{cccc}
\mathrm{o} & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{a} & 0 & \ell & \mathrm{~m} \\
\mathrm{~b} & \ell & 0 & \mathrm{p} \\
\mathrm{c} & \mathrm{~m} & \mathrm{p} & 0
\end{array}\right]
$$

## SECTION-B

6. (a) Classify the following form as definite, semi-definite and indefinite :

$$
2 x^{2}+2 y^{2}+3 z^{2}-4 y z-4 z x+2 x y
$$

(b) Solve the equation $x^{3}-7 x^{2}+36=0$, one root being double the other.
7. (a) Solve the equation $x^{4}-8 x^{3}+23 x^{2}-28 x+12=0$, it being given that the difference of two of the roots is equal to other difference of the other two.
(b) Find the condition that the roots of the equation $\mathrm{x}^{3}-\mathrm{px} \mathrm{x}^{2}+\mathrm{qx}-\mathrm{r}=0$ may be in H.P.
8. (a) Diminish the root of the equation :
$a_{0} x^{3}+3 a_{1} x^{2}+3 a_{2} x+a_{3}=0$ by $h$ and find the condition that the second and third terms may be removed simultaneously.
(b) If $\alpha, \beta, \gamma$ are the roots of the equation :
$x^{3}-5 x^{2}+x+12=0$, find the value of $\sum \alpha^{2} \cdot(\beta+\gamma)$.
9. (a) Use Cardan's method to solve :

$$
x^{3}+x^{2}-16 x+20=0
$$

(b) Solve by Descarte's Method : $\mathrm{x}^{4}-10 \mathrm{x}^{3}+26 \mathrm{x}^{2}-10 \mathrm{x}+1=0$.
10. (a) Show that the equation $x^{8}-x^{3}+x^{2}-x+1=0$ must have at least 4 non-real roots.
(b) Find by Newton's method of approximation the positive roots of $x^{3}-2 x-5=0$.

